Image-based immersed boundary model of the aortic root
نویسندگان
چکیده
Each year, approximately 300,000 heart valve repair or replacement procedures are performed worldwide, including approximately 70,000 aortic valve replacement surgeries in the United States alone. Computational platforms for simulating cardiovascular devices such as prosthetic heart valves promise to improve device design and assist in treatment planning, including patient-specific device selection. This paper describes progress in constructing anatomically and physiologically realistic immersed boundary (IB) models of the dynamics of the aortic root and ascending aorta. This work builds on earlier IB models of fluid-structure interaction (FSI) in the aortic root, which previously achieved realistic hemodynamics over multiple cardiac cycles, but which also were limited to simplified aortic geometries and idealized descriptions of the biomechanics of the aortic valve cusps. By contrast, the model described herein uses an anatomical geometry reconstructed from patient-specific computed tomography angiography (CTA) data, and employs a description of the elasticity of the aortic valve leaflets based on a fiber-reinforced constitutive model fit to experimental tensile test data. The resulting model generates physiological pressures in both systole and diastole, and yields realistic cardiac output and stroke volume at physiological Reynolds numbers. Contact between the valve leaflets during diastole is handled automatically by the IB method, yielding a fully competent valve model that supports a physiological diastolic pressure load without regurgitation. Numerical tests show that the model is able to resolve the leaflet biomechanics in diastole and early systole at practical grid spacings. The model is also used to examine differences in the mechanics and fluid dynamics yielded by fresh valve leaflets and glutaraldehyde-fixed leaflets similar to those used in bioprosthetic heart valves. Although there are large differences in the leaflet deformations during diastole, the differences in the open configurations of the valve models are relatively small, and nearly identical hemodynamics are obtained in all cases considered.
منابع مشابه
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to e-volve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaf...
متن کاملSimulating the Fluid Dynamics of Natural and Prosthetic Heart Valves Using the Immersed Boundary Method
The immersed boundary method is both a general mathematical framework and a particular numerical approach to problems of fluid-structure interaction. In the present work, we describe the application of the immersed boundary method to the simulation of the fluid dynamics of heart valves, including a model of a natural aortic valve and a model of a chorded prosthetic mitral valve. Each valve is m...
متن کاملFluid Mechanics of Deformable Aortic Prostheses
The simultaneous replacement of a diseased aortic valve, aortic root and ascending aorta with a composite graft equipped with a prosthetic valve is a nowadays standard surgical approach, known as the Bentall procedure: the Valsalva sinuses of the aortic root are sacrificed and the coronary arteries are reconnected directly to the graft. In practice, two different composite–material prostheses a...
متن کاملImmersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions
The immersed boundary (IB) method is a mathematical and numerical framework for problems of fluid–structure interaction, treating the particular case in which an elastic structure is immersed in a viscous incompressible fluid. The IB approach to such problems is to describe the elasticity of the immersed structure in Lagrangian form, and to describe the momentum, viscosity, and incompressibilit...
متن کاملAutomatic Aortic Root Segmentation with Shape Constraints and Mesh Regularisation
A non-invasive procedure called Transcatheter Aortic Valve Implantation (TAVI) has emerged as an alternative procedure for patients suffering with aortic stenosis, but cannot undergo standard open-heart surgery. A full segmentation of the aortic root is important to the success of the procedure, and is essential for patient selection, procedural planning, and post-evaluation [1]. We propose a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical engineering & physics
دوره 47 شماره
صفحات -
تاریخ انتشار 2017